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Abstract

This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded
composite lap joints with tapered and/or non tapered adherend edges under uniaxial tension. The solution method pro-
vides the transverse shear and normal stresses in the adhesives and in-plane stress resultants and bending moments in
the adherends. The method utilizes the principle of virtual work in conjunction with von Karman�s nonlinear plate the-
ory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layers between the
adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintain-
ing a linear stress–strain relationship in the adherends. In order to account for the stiffness changes due to thickness
variation of the adherends along the tapered edges, the in-plane and bending stiffness matrices of the adherents are var-
ied as a function of thickness along the tapered region. The combination of these complexities results in a system of
nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite
element method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhe-
sive material on the stress fields in the adherends, as well as the adhesives of a single- and double-lap joint.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The reduction of the transverse shear and normal stress concentrations along the edges of adhesive bond
lines is important in order to prevent premature failure of the bonded joint. The determination of the com-
plete stress and strain fields in bonded composite lap joints presents difficulties arising from the step-wise
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.07.035

* Corresponding author. Tel.: +1 520 621 6113; fax: +1 520 621 8191.
E-mail address: madenci@email.arizona.edu (E. Madenci).

mailto:madenci@email.arizona.edu


1460 E. Oterkus et al. / International Journal of Solids and Structures 43 (2006) 1459–1489
geometry, material property variations, laminated construction of the adherends, the bilinear material
behavior of the adhesive, as well as the effect of tension induced stiffening (geometrically nonlinear effect)
on the bending deformation of the adherends subjected to uniaxial tension. Also, the local stress variations
near the ends of the overlap region are characterized by very high gradients or even analytically predicted
singularities. The sharp gradients of the stress components depend on the elastic properties of the adher-
ends and adhesive as well as the joint geometry. These peak transverse normal and shear stresses in the
adhesive can be reduced by tapering the adherends toward the ends.

In order to facilitate the use of lap joints in present and future structures, the analysis of the geometri-
cally nonlinear response of bonded single-lap joints has received considerable attention over the past two
decades. Previous analyses of bonded lap joints can be categorized as ‘‘shear-lag’’ and ‘‘finite-element’’
models. An extensive review and in-depth discussion of the previous investigations can be found in articles
by Tsai and Morton (1994), Ding and Kumosa (1994) and Osnes and Andersen (2003). Due to the afore-
mentioned complexities, the majority of the investigations have utilized the finite element method in deter-
mining the stress and the strain field in a bonded lap joint. However, in many of these investigations, the
three-dimensional description of the bonded lap joint was simplified to a two-dimensional analysis under
certain assumptions (Dattaguru et al., 1984; Reddy and Roy, 1988; Pandey et al., 1999; Apalak and Gunes,
2001).

In order to enhance computational efficiency, Penado (1998) introduced an approach based on the sub-
structuring technique. In this approach, the general response of the bonded lap joint is obtained analytically
from the solution of force-moment equilibrium conditions. The analytically evaluated force-moment values
at the overlap ends are then used as the natural boundary condition for a highly detailed two-dimensional
finite element analysis of the overlap joint under the assumption that the overlap ends are simply supported.

Combining the shear-lag model of Goland and Reissner (1944) with a detailed finite element modeling of
the adherends with three-dimensional elements, Edlund and Klarbring (1992) employed the principle of vir-
tual work to analyze the geometrically nonlinear response of bonded single-lap joints with a linearly elastic
adhesive. The shear-lag model approximates the transverse shear and normal strain components in terms of
the relative displacements of the adherends. An alternative to the shear-lag model is to model the adhesive
with one or two layers of brick elements and assemble these elements with the brick elements of the adh-
erends. However, as mentioned before, the size of the brick elements used in the adhesive might introduce
aspect ratio problems. The recent investigations by Pandey and Narasimhan (2001) and Narasimhan and
Pandey (2003) utilized this approach for solving the three-dimensional large deflection analysis of single-lap
joints with viscoelastic adhesive behavior.

In the finite element analysis, the adhesive requires a highly refined mesh in order to keep the proper
aspect ratio between the elements in the adherends and adhesive. Therefore, the major advantage of the
two-dimensional finite element models over the three-dimensional models is the significant reduction of
the number of degrees of freedom. Furthermore, for an incremental-iterative solution of the governing
equations in which the global stiffness matrix is repeatedly calculated, the three-dimensional finite element
analysis of the entire domain becomes computationally demanding.

Thus, it is beneficial to have an efficient special-purpose analysis method that can be used to conduct
extensive parametric studies in a timely manner and at relatively low computational costs. However, there
is no analytical or semi-analytical approach for determining the three-dimensional response of the geomet-
rically nonlinear analysis of bonded single-lap joints. Therefore, the goal of the present study is to develop a
three-dimensional analysis method that is well suited for parametric studies that accurately predicts the geo-
metrically nonlinear behavior of a composite lap joint with tapered edges subjected to uniaxial tension. In
particular, this study focuses on the effects of geometric nonlinearity, tapering of the adherend thickness,
changes in the overlap length of the adherends, and the linear and bilinear elastic behaviors of the adhesive
on the in-plane stresses in the adherends and the transverse normal and transverse shear stresses in the
adhesive of the joint.
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In the remainder of this paper, details of the analysis method are presented and results from this ap-
proach are discussed. First, the boundary-value problem is defined. Next, the analysis details and numerical
solution procedure are described. Then, results for two bonded lap-joint configurations are presented.
2. Problem statement

The bonded lap joint configurations consists of two or more rectangular composite adherends and thin
adhesive layers in between them, as shown in Fig. 1. While the adhesive thickness is uniform, the composite
adherends may have tapered edges. The tapered edges of the adherends are used to reduce stress concentra-
tions along the edges. A lap joint may consist of P number of adherends which are bonded to each other by
adhesive layers. The adherends are identified by sub- or super-script, (p) with p = 1, . . . ,P. As shown in
Fig. 1, each adhesive layer (interface) between the two adjacent adherends denoted by (i) and (j) is identified
by superscript, (i, j). The area and boundary of the pth adherend are denoted by A(p) and C(p), respectively.
The area and boundary of the adhesive (interface) between the ith and jth adherends are denoted byA(i,j) and
C(i,j), respectively. As shown in Fig. 1, both the adherends and adhesive layers (interfaces) have rectangular
boundary geometries. Hence, their boundaries can be represented by four straight boundary segments, i.e,
CðpÞ ¼
X4

m¼1

CðpÞ
m and Cði;jÞ ¼

X4

m¼1

Cði;jÞ
m ð1Þ
in which CðpÞ
m and Cði;jÞ

m denote the mth boundary segment around the adherend and interface (adhesive).
Along the adherend and adhesive boundaries, the unit normals to the mth boundary segment are repre-
sented by nðpÞm and nði;jÞm as depicted in Fig. 1.

Although the current analysis addresses bonded lap joints under uniaxial tension only, the formulation
includes general loading conditions. Therefore, the exterior edges of the adherends can be subjected to both
in-plane tractions and bending moments. The in-plane external tractions include components, tx, ty, and tz,
and the external bending tractions include components mx and my. In the adherends, the global displace-
ment components in the x-, y-, and z-directions are denoted by, U ðpÞ

x , U ðpÞ
y , and U ðpÞ

z , respectively
(p = 1, . . . ,P).
Fig. 1. Description of geometry, fiber angle, and loading of two adjacent adherends in a bonded lap joint.
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The laminated adherends are made of specially orthotropic layers. Each layer has a thickness of tðpÞk and
orientation angle of hðpÞk , (p = 1, . . . ,P), which is defined with respect to the positive x-axis. Also, the ortho-
tropic material properties of each layer include the elastic moduli, EðpÞ

L and EðpÞ
T , shear modulus GðpÞ

LT , and
Poisson�s ratio mðpÞLT , where L and T are the longitudinal (fiber) and transverse directions, respectively.
The adhesive material between the ith and jth adherends is isotropic, homogeneous, and elastic with a bilin-
ear relation for the effective transverse shear stress, sði;jÞeff , and effective transverse shear strain, cði;jÞeff , as shown
in Fig. 2. The effective transverse shear stress and strain in the adhesive between the ith and jth adherends
are defined by
sði;jÞeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rði;jÞ2
xz þ rði;jÞ2

yz

q
ð2bÞ

cði;jÞeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cði;jÞ

2

xz þ cði;jÞ
2

yz

q
ð2cÞ
in which rði;jÞ
xz and rði;jÞ

yz represent the components of the transverse shear stress and cði;jÞxz and cði;jÞyz represent
the components of the transverse shear strain in the adhesive. As shown in Fig. 2, the initial shear modulus
of the bilinear adhesive behavior is denoted by Gði;jÞ

1 , and it reduces to Gði;jÞ
2 when the effective transverse

shear strain, cði;jÞeff , reaches the characteristic shear strain, cði;jÞc . Also, it has a Poisson�s ratio of m(i,j). With
these parameters, the bilinear relationship between the effective transverse shear stress, sði;jÞeff , and effective
transverse shear strain, cði;jÞeff , can be expressed as
sði;jÞeff ¼ Gði;jÞ
1 cði;jÞeff ½1� Hðcði;jÞeff � cði;jÞc Þ� þ ½Gði;jÞ

1 cði;jÞc þ Gði;jÞ
2 ðcði;jÞeff � cði;jÞc Þ� � Hðcði;jÞeff � cði;jÞc Þ ð3Þ
where Hðcði;jÞeff � cði;jÞc Þ is the Heaviside step function.
In accordance with this relationship, the transverse shear stresses, rði;jÞ

az , and strains, cði;jÞaz , are related by
rði;jÞ
az ¼ Gði;jÞ

eff c
ði;jÞ
az ða ¼ x; yÞ ð4Þ
in which the parameters Gði;jÞ
eff represent the effective shear modulus of the adhesive layer, defined as
Gði;jÞ
eff ¼ sði;jÞeff

cði;jÞeff

ð5Þ
Fig. 2. Bilinear behavior of the adhesive in terms of effective transverse shear stress and transverse shear strain.



Fig. 3. The reference surface and kinematics of a bonded lap joint.

Fig. 4. Description of lap joint geometry and loading: (a) single-lap and (b) double-lap.
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Furthermore, the transverse normal stress, rði;jÞ
zz , and strain, eði;jÞzz , in the adhesive are related by
rði;jÞ
zz ¼ Eði;jÞ

eff e
ði;jÞ
zz ð6Þ
in which Eði;jÞ
eff is the effective Young�s modulus expressed as
Eði;jÞ
eff ¼ 2Gði;jÞ

eff ð1þ mði;jÞÞ ð7Þ

While the thickness of the adhesive between the ith and jth adherends is uniform and denoted by 2h(i,j),

the adherends have variable thicknesses, 2h(p)(x, y), with (p = 1, . . . ,P), due to their tapered shape near the
edges. The thicknesses of the adherends are defined as discrete linear functions of the in-plane coordinates.
The reference planes of the pth adherend and the adhesive (interface) between the ith and jth adherends are,
respectively, denoted by z(p) and z(i,j) as shown in Fig. 3.

The problem posed here concerns the development of a three-dimensional semi-analytical method to
determine the displacement and stress fields in bonded lap joints while including the effects of geometric
nonlinearity and bilinear elastic adhesive material behavior. The capability of the method is demonstrated
by considering first a single-lap joint of quasi-isotropic tapered adherends and a bilinear adhesive material
behavior as illustrated in Fig. 4a. The second configuration concerns a double-lap joint consisting four adh-
erends bonded with linear or bilinear adhesives as illustrated in Fig. 4b. The lap joints are simply supported
along the left and right edges of the upper and lower adherends, respectively. The left edge of the upper
adherend is also restrained against any horizontal movement. Furthermore, the mid points of the left
and right edges of the lower and upper adherends are restrained to move in the y-direction so as to suppress
the rigid-body movement of the lap joint.
3. Solution method

The present three-dimensional geometrically nonlinear analysis method is based on the principle of vir-
tual work. The displacement components are approximated in terms of the B-spline functions (Hoschek
and Lasser, 1993) in a double series representation as
uðpÞa ¼
XM ðpÞ

x

m¼0

XM ðpÞ
y

n¼0

cðpÞaðmnÞT mðx; tðpÞx ;KÞT nðy; tðpÞy ;KÞ ð8Þ
in which cðpÞaðmnÞ, with (p = 1, . . . ,P) and (a = x, y, z), are the unknown coefficients. The parameter M ðpÞ
b , with

(b = x, y) specifies the extent of the series and the knot vector tðpÞb contains pre-selected knot points (coor-
dinates) in the direction of b. These knot points are used to increase the accuracy of the B-splines at certain
locations. Also, the parameter K controls the degree of the B-spline functions and, consequently, the con-
tinuity of the field variable. The Kth-order B-spline function is comprised of the (K�1)th-order of polyno-
mials. The details of the B-spline functions along with the definitions of the parameters t

ðpÞ
b and K are given

in Appendix A. These displacement functions can be expressed in matrix form as
uðpÞx ¼ VðpÞTcðpÞx ð9aÞ

uðpÞy ¼ VðpÞTcðpÞy ð9bÞ

uðpÞz ¼ VðpÞTcðpÞz ð9cÞ
in which the vectors cðpÞa , with (a = x, y, z), contain the unknown coefficients (generalized coordinates) cðpÞaðmnÞ.
The known vectors, V(p), are expressed in terms of the B-spline functions Tmðx; tðpÞx ;KÞ and T nðy; tðpÞy ;KÞ. In
matrix form, the approximate displacement representations of Eqs. (9a)–(9c) are rewritten as
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uðpÞx ¼ VðpÞT
x qðpÞ

uðpÞy ¼ VðpÞT
y qðpÞ

uðpÞz ¼ VðpÞT
z qðpÞ

ð10Þ
in which the known vectors, VðpÞ
a , with (a = x, y, z), are defined as
VðpÞT
x ¼ VðpÞ; 0; 0

� �
ð11aÞ

VðpÞT
y ¼ 0;VðpÞ; 0

� �
ð11bÞ

VðpÞT
z ¼ 0; 0;VðpÞ� �

ð11cÞ
The unknown vector q(p) is defined as
qðpÞ
T ¼ cðpÞ

T

x ; cðpÞ
T

y ; cðpÞ
T

z

n o
ð12Þ
Note that the series representation of the displacement components is not required to satisfy any type of
kinematic admissibility.

3.1. Displacement components

The adherends interacting through the adhesive, which sustains transverse normal and shear deforma-
tions but not in-plane deformation, experience in-plane and bending deformations while the transverse nor-
mal and shear deformations are disregarded because the adherends are considered to be thin. Therefore, the
in-plane strain components in the adhesive, and the transverse normal and shear strain components in the
adherends, are not included in the derivation of the kinematic relations.

In accordance with the Kirchhoff plate theory, the global displacement components, U ðpÞ
x , U ðpÞ

y , and U ðpÞ
z

in each of the adherends are defined as
U ðpÞ
a ðx; y; zÞ ¼ uðpÞa ðx; yÞ � fðpÞhðpÞuðpÞz;a ð13aÞ

U ðpÞ
z x; y; zð Þ ¼ uðpÞz x; yð Þ ð13bÞ
for which (p = 1, . . . ,P) and (a = x, y), and the displacement components, uðpÞx , uðpÞy , and uðpÞz , are defined on
the reference surfaces with respect to the global Cartesian coordinates (x(p), y(p), z(p)). In Eq. (13), the sub-
script after a comma indicates differentiation with respect to the variable. The coordinate f(p) located on
each of the reference planes is defined as
fðpÞ ¼ z� zðpÞ

hðpÞ
ðp ¼ 1; . . . ; P Þ ð14Þ
and varies in the range �1 6 f(p) 6 1, with (p = 1, . . . ,P). The thicknesses of the adherends are specified by
2h(p)(x, y), in which 2hðpÞðx; yÞ ¼ 2hðpÞ0 in the untapered sections of the adherends. Also, the location of the
reference planes with respect to the global coordinate system (x, y, z) are defined by z(p), which are located
at the mid-surfaces (with respect to the untapered thickness) of the adherends.

3.2. Strain–displacement relations

The strain measure for the adherends is based on the modified form of Green�s nonlinear strain displace-
ment relations in conjunction with von Karman assumptions for large deformation of plates (Fung and
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Tong, 2001). Therefore, the strain components in the adherends, eðpÞab ðp ¼ 1; . . . ; P ; a; b ¼ x; yÞ, can be ex-
pressed as
eðpÞxx ¼ eðpÞxx þ fðpÞhðpÞjðpÞ
xx þ 1

2
ðuðpÞz;x Þ

2 ð15aÞ

eðpÞyy ¼ eðpÞyy þ fðpÞhðpÞjðpÞ
yy þ 1

2
ðuðpÞz;y Þ

2 ð15bÞ

eðpÞxy ¼ 1

2
cðpÞxy þ 1

2
fðpÞhðpÞjðpÞ

xy þ 1

2
uðpÞz;x u

ðpÞ
z;y ð15cÞ
in which
eðpÞxx ¼ uðpÞx;x ; j
ðpÞ
xx ¼ �uðpÞz;xx ð16a; bÞ

eðpÞyy ¼ uðpÞy;y ; j
ðpÞ
yy ¼ �uðpÞz;yy ð16c; dÞ

cðpÞxy ¼ uðpÞx;y þ uðpÞy;x ; j
ðpÞ
xy ¼ �2uðpÞz;xy ð16e; fÞ
where eðpÞxx , e
ðpÞ
yy , and cðpÞxy represent the in-plane strain resultants and jðpÞ

xx , j
ðpÞ
yy , and jðpÞ

xy represent the bending
strain (curvature) resultants on the reference surfaces. Also, the in-plane and bending (curvature) strain
resultants constitute the components of the linear part of the in-plane strain, eðpÞL , and curvature, jðpÞ

L , vec-
tors in the form
e
ðpÞT
L ¼ eðpÞxx ; e

ðpÞ
yy ; c

ðpÞ
xy

n o
¼ uðpÞx;x ; u

ðpÞ
y;y ; u

ðpÞ
x;y þ uðpÞy;x

n o
ð17aÞ

j
ðpÞT
L ¼ jðpÞ

xx ; j
ðpÞ
yy ; j

ðpÞ
xy

n o
¼ �uðpÞz;xx;�uðpÞz;yy ;�2uðpÞz;xy

n o
ð17bÞ
Similarly, the nonlinear terms appearing in the strain components, eðpÞab ða; b ¼ x; yÞ, are included in the non-
linear part of the in-plane strain resultant vector, e

ðpÞ
N , in the form
e
ðpÞT
N ¼ 1

2
ðuðpÞz;x Þ

2
;
1

2
ðuðpÞz;y Þ

2
; uðpÞz;x u

ðpÞ
z;y

� �
ð18Þ
Although the bending deformations (curvatures) are only linearly related to the out-of-plane displace-
ment component, uðpÞz , for consistency, a zero-valued vector is employed to represent the nonlinear part
of the curvature vector, jðpÞ

N , as
j
ðpÞ
N ¼ f0; 0; 0g ð19Þ
Substituting for the derivatives of the displacement components from Eq. (10), the linear and nonlinear
parts of the in-plane strain resultant and curvature vectors can be expressed as
e
ðpÞ
L ¼ LðpÞ

eL
qðpÞ; j

ðpÞ
L ¼ LðpÞ

jL
qðpÞ ð20a; bÞ

e
ðpÞ
N ¼ LðpÞ

eN
ðqðpÞÞqðpÞ; j

ðpÞ
N ¼ 0 ð20c; dÞ
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where
LðpÞ
eL

¼

VðpÞT
x;x

VðpÞT
y;y

VðpÞT
x;y þ VðpÞT

y;x

2
6664

3
7775 ð21aÞ

LðpÞ
jL

¼ �

VðpÞT
z;xx

VðpÞT
z;yy

2VðpÞT
z;xy

2
6664

3
7775 ð21bÞ

LðpÞ
eN
ðqðpÞÞ ¼ 1

2

uðpÞz;xV
ðpÞT
z;x

uðpÞz;yV
ðpÞT
z;y

uðpÞz;xV
ðpÞT
z;y þ uðpÞz;yV

ðpÞT
z;x

2
6664

3
7775 ð21cÞ
The vectors of strain resultants defined in Eq. (20) can be combined in a compact form as
eðpÞa ¼ LðpÞ
a qðpÞ ða ¼ L;NÞ ð22Þ
where
eðpÞ
T

a ¼ eðpÞ
T

a ; jðpÞT
a

n o
; L

ðpÞ
L ¼

LðpÞ
eL

LðpÞ
jL

" #
ð23a; bÞ

L
ðpÞ
N ðqðpÞÞ ¼ LðpÞ

eN
ðqðpÞÞ
0

" #
ð23cÞ
Furthermore, the linear and nonlinear parts of the strain vectors, eðpÞL and e
ðpÞ
N , can be added to form the

total strain vector as
eðpÞ ¼ e
ðpÞ
L þ e

ðpÞ
N ¼ L

ðpÞ
L þ L

ðpÞ
N ðqðpÞÞ

h i
qðpÞ ¼ HðpÞðqðpÞÞqðpÞ ð24Þ
where
HðpÞðqðpÞÞ ¼ L
ðpÞ
L þ L

ðpÞ
N ðqðpÞÞ ð25Þ
The displacement components, in the adhesive bonding of the ith and jth adherends, are assumed to vary
linearly through the thickness (Tsai and Morton, 1994). Although the adhesive undergoes the same mag-
nitudes of the in-plane and transverse displacements as those of the adherends, the strain measure is based
on a linear shear-lag model, where the transverse shear strain and the normal strain components in the
interface (adhesive) between the ith and jth adherends are expressed as
cði;jÞaz ¼ 1

2hði;jÞ
½uðiÞa ðx; yÞ � uðjÞa ðx; yÞ� þ 1

2hði;jÞ
½hðiÞuðiÞz;a þ hðjÞuðjÞz;a� ða ¼ x; yÞ ð26aÞ

eði;jÞzz ¼ 1

2hði;jÞ
½uðiÞz ðx; yÞ � uðjÞz ðx; yÞ� ð26bÞ
Finally, substituting from Eq. (10) for the displacement components in Eq. (26) leads to the strain vector
containing the transverse shear and normal strain components in the adhesive as
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eði;jÞ ¼ LðiÞ
a qðiÞ � LðjÞ

a qðjÞ ð27Þ

where
eði;jÞT ¼ cði;jÞxz ; cði;jÞyz ; eði;jÞzz

n o
ð28Þ
and the matrices LðaÞ
a are defined as
LðiÞ
a ¼ LðiÞ

ae þ LðiÞ
aj ð29aÞ

LðjÞ
a ¼ LðjÞ

ae � LðjÞ
aj ð29bÞ
in which
LðaÞ
ae ¼ 1

2hði;jÞ

VðaÞT
x

VðaÞT
y

0T

2
6664

3
7775 ða ¼ i; jÞ ð30aÞ

LðaÞ
aj ¼ 1

2hði;jÞ

hðaÞVðaÞT
z;x

hðaÞVðaÞT
z;y

ð�1ÞdajVðaÞT
z

2
6664

3
7775 ða ¼ i; jÞ ð30bÞ
3.3. Stress–strain relations

The eccentrically placed adherends in bonded lap joints under uniaxial in-plane external loads result in
not only in-plane stresses but also in bending moments in the adherends. This secondary bending induces
transverse normal (peeling) stresses in the adhesive. The in-plane stress resultants and bending moments
generated by the applied external loading in the adherends are related to the in-plane strain resultants
and curvatures, which are defined on the mid-surfaces of the adherends through the constitutive relation as
NðpÞ

MðpÞ

( )
¼ AðpÞðx; yÞ BðpÞðx; yÞ

BðpÞðx; yÞ DðpÞðx; yÞ

" #
eðpÞ

jðpÞ

( )
ð31Þ
where
AðpÞ
mnðx; yÞ ¼ hðpÞðx; yÞ

PNp

k¼1

ðfðpÞkþ1 � fðpÞk ÞQðpÞ
mnðkÞ

BðpÞ
mnðx; yÞ ¼ 1

2
ðhðpÞðx; yÞÞ2

PNp

k¼1

ðfðpÞ
2

kþ1 � fðpÞ
2

k ÞQðpÞ
mnðkÞ

DðpÞ
mnðx; yÞ ¼ 1

3
ðhðpÞðx; yÞÞ3

PNp

k¼1

ðfðpÞ
3

kþ1 � fðpÞ
2

k ÞQðpÞ
mnðkÞ

ðp ¼ 1; . . . ; P Þ ð32Þ
with
fðpÞk ¼ zkðx; yÞ � zðpÞ

hðpÞðx; yÞ
ðk ¼ 1; . . . ;Np; zðpÞ � hðpÞ 6 zk 6 zðpÞ þ hðpÞÞ ð33Þ
In Eq. (31), the matrices A(p), D(p), and B(p), with (p = 1, . . . ,P), are associated with in-plane, bending,
and coupled in-plane and bending behaviors of the adherends, and Q

ðpÞ
mnðkÞ ðp ¼ 1; . . . ; P Þ are the
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coefficients of the reduced stiffness matrix of the kth ply defined in the global (x � y) coordinate system.
Note that the tapered adherend thickness, 2h(p)(p = 1, . . . ,P), varies as a function of the global (x � y) coor-
dinates. Hence, the material property matrices associated with the adherends, A(p), D(p), and B(p), are depen-
dent on the in-plane coordinates.

Furthermore, the ratio of the ply thickness to the adherend thickness is assumed to be constant, i.e.,
tðpÞk ðx; yÞ=2hðpÞðx; yÞ ¼ �tðpÞk ¼ constant. In this case, the material property matrices, A(p), D(p), and B(p), be-
come dependent only on the adherend thickness, 2h(p)(x, y), with (p = 1, . . . ,P).

The relation given in Eq. (31) can be compacted in the form
sðpÞ ¼ EðpÞeðpÞ ðp ¼ 1; . . . ; P Þ ð34Þ

in which s(p), E(p), and e(p) are defined as
sðpÞ
T ¼ NðpÞT ;MðpÞT

n o
ð35aÞ

EðpÞ ¼ AðpÞ BðpÞ

BðpÞ DðpÞ

" #
ð35bÞ

eðpÞ
T ¼ eðpÞ

T

; jðpÞT
n o

ð35cÞ
With the representation of e(p) in Eq. (24), the stress–strain relations given in Eq. (35) can be rewritten as
sðpÞ ¼ EðpÞHðpÞðqðpÞÞqðpÞ ðp ¼ 1; . . . ; P Þ ð36Þ

Because the adhesives do not sustain in-plane deformation, the in-plane stress components, rði;jÞ

xx , rði;jÞ
yy , and

rði;jÞ
xy , are disregarded. In the adhesive between the ith and jth adherends, the transverse shear stresses, rði;jÞ

xz

and rði;jÞ
yz , and the transverse normal stress, rði;jÞ

zz , are related to the corresponding strain components
through a bilinear relation as
sði;jÞ ¼ Eði;jÞeði;jÞ ð37Þ

where
sði;jÞ
T ¼ hði;jÞ rði;jÞ

xz ; rði;jÞ
yz ; rði;jÞ

zz

n o
ð38aÞ

eði;jÞ
T ¼ cði;jÞxz ; cði;jÞyz ; eði;jÞzz

n o
ð38bÞ

Eði;jÞ qðiÞ; qðjÞ
� �

¼
Gði;jÞ

eff ðqðiÞ; qðjÞÞ 0

0 Gði;jÞ
eff ðqðiÞ; qðjÞÞ

0 0

2
64

0

0

Eði;jÞ
eff ðqðiÞ; qðjÞÞ

3
75 ð38cÞ
in which the expressions for Gði;jÞ
eff ðqðiÞ; qðjÞÞ ¼ Gði;jÞ

eff ðc
ði;jÞ
eff Þ and Eði;jÞ

eff ðqðiÞ; qðjÞÞ ¼ Eði;jÞ
eff ðc

ði;jÞ
eff Þ are defined in Eqs.

(5) and (7), respectively.
Substituting for the expression for e(i,j) from Eq. (27) permits the stress–strain relations given in Eq. (38)

to be expressed in terms of the unknowns of the adherends as
sði;jÞ ¼ Eði;jÞðqðiÞ; qðjÞÞðLðiÞ
a qðiÞ � LðjÞ

a qðjÞÞ ð39Þ
3.4. Boundary conditions

Along the mth segment of the boundary of the adherends, denoted by CðpÞ
m , with (p = 1, . . . ,P), as shown

in Fig. 1, the prescribed displacement components normal and tangent to the boundary, ðmÞû
ðpÞ
n , ðmÞû

ðpÞ
t , and

ðmÞû
ðpÞ
z , and the slope normal to the boundary, ðmÞû

ðpÞ
z;n , can be imposed as
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uðpÞn ¼ ðmÞû
ðpÞ
n

uðpÞt ¼ ðmÞû
ðpÞ
t

uðpÞz ¼ ðmÞû
ðpÞ
z

uðpÞz;n ¼ ðmÞû
ðpÞ
z;n

on CðpÞ
m ðp ¼ 1; . . . ; P ;m ¼ 1; 2; 3; 4Þ ð40Þ
Utilizing the vector representations of the displacement components given by Eq. (10), these prescribed
displacements can be expressed in vector form as
VðpÞT
m qðpÞ � ûðpÞm ¼ 0 ðp ¼ 1; . . . ; P ;m ¼ 1; 2; 3; 4Þ ð41Þ
where the matrix VðpÞ
m and the vector ûðpÞm are defined as
VðpÞT
m ¼ ðnðpÞTm e1ÞVðpÞT

x þ ðnðpÞTm e2ÞVðpÞT
y � ðnðpÞTm e2ÞVðpÞT

x þ ðnðpÞTm e1ÞVðpÞT
y VðpÞT

z ðnðpÞTm e1ÞVðpÞT
z;x þ ðnðpÞTm e1ÞVðpÞT

z;y

h i
ð42Þ
and
ûðpÞ
T

m ¼ ðmÞû
ðpÞ
n ðmÞû

ðpÞ
t ðmÞû

ðpÞ
z ðmÞû

ðpÞ
z;n

n o
ð43Þ
with e1 and e2 being the base vectors of the global coordinates.
The boundary conditions in Eq. (41) are enforced as constraint conditions by introducing Lagrange mul-

tiplier functions, KðpÞ
amðtÞ, with a = n, t, z, and K0ðpÞ

zm ðtÞ, defined along the mth boundary segment. These
boundary conditions are written in integral form as
Z

CðpÞ
m

KðpÞ
m ðtÞ VðpÞT

m qðpÞ � ûðpÞm

n o
dt ¼ 0 ðp ¼ 1; . . . ; P ;m ¼ 1; 2; 3; 4Þ ð44Þ
where the matrix KðpÞ
m contains the Lagrange multiplier functions in the form
KðpÞ
m ðtÞ ¼

KðpÞ
nmðtÞ

KðpÞ
tm ðtÞ

KðpÞ
zm ðtÞ

K0ðpÞ
zm ðtÞ

2
6664

3
7775 ðp ¼ 1; . . . ; P ;m ¼ 1; 2; 3; 4Þ ð45Þ
where the unknown Lagrange multiplier functions, KðpÞ
amðtÞ, with a = n, t, z, and K0ðpÞ

zm ðtÞ, are assumed in poly-
nomial forms as
KðpÞ
amðtðnÞÞ;K0ðpÞ

zm ðtðnÞÞ
� �

¼
XS

s¼0

kðpÞsðamÞ; k
0ðpÞ
sðzmÞ

� 	
T sðn; tðpÞCm

;KÞ ðp ¼ 1; . . . ; P ;m ¼ 1; 2; 3; 4Þ ð46Þ
where T sðn; tðpÞCm
;KÞ represents the sth term of the (K�1)th-degree B-spline functions defined along the

straight boundary segment CðpÞ
m , with t

ðpÞ
Cm

being the associated knot vector. Also, ks(am) and k 0
s(zm), with

a = n, t, z, are the unknown Lagrange multipliers associated with the B-spline functions, T sðn; tðpÞCm
;KÞ.

Substituting the expressions for the Lagrange multiplier functions from Eq. (46) into Eq. (45) and rear-
ranging the terms, the constraint equations representing the prescribed displacements can be rewritten as
kðpÞ
T

m ðCðpÞ
m qðpÞ � fðpÞmc Þ ¼ 0 ð47Þ
where
kðpÞ
T

m ¼ k
ðpÞT
1m ; k

ðpÞT
2m ; � � � ; k

ðpÞT
Sm

n o
ð48Þ
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with
k
ðpÞT
km ¼ kðpÞkðnmÞ; kðpÞkðtmÞ; kðpÞkðzmÞ; k0ðpÞkðzmÞ

n o
ð49Þ
and
CðpÞT
m ¼ C

ðpÞT
1m C

ðpÞT
2m � � � C

ðpÞT
Sm

h i
ð50Þ
with
CðpÞ
sm ¼

Z
CðpÞ
m

T sðn; tðpÞCm
;KÞVðpÞT

m dC ð51Þ
and
fðpÞ
T

mc ¼ f
ðpÞT
1ðmcÞ; f

ðpÞT
2ðmcÞ; � � � ; f

ðpÞT
SðmcÞ

n o
ð52Þ
with
f
ðpÞT
sðmcÞ ¼

Z
CðpÞ
m

T sðn; tðpÞCm
;KÞûðpÞ

T

m dC ð53Þ
for (p = 1, . . . ,P; m = 1, 2, 3, 4).
The constraint equations in Eq. (47) can be assembled to form a single matrix equation combining all of

the constraint equations as
kðpÞ
T

ðCðpÞqðpÞ � fðpÞc Þ ¼ 0 ðp ¼ 1; . . . ; P Þ ð54Þ

where
kðpÞ
T

¼ k
ðpÞT
1 ; k

ðpÞT
2 ; k

ðpÞT
3 ; k

ðpÞT
4

n o
ð55aÞ

CðpÞT ¼ C
ðpÞT
1 C

ðpÞT
2 C

ðpÞT
3 C

ðpÞT
4

h i
ð55bÞ

fðpÞ
T

c ¼ f
ðpÞT
1c ; f

ðpÞT
2c ; f

ðpÞT
3c ; f

ðpÞT
4c

n o
ð55cÞ
The constraint equations in Eq. (54) are linearly independent, provided the rank of the matrix C(p) is equal
to the total number of constraint equations. Also, Eq. (54) can be treated as the potential energy of the
reaction forces producing zero energy since C(p) q(p) = 0, and it can be referred to as the potential energy
of the constraint forces, Vc, in the form
V c ¼
Xp

p¼1

kðpÞ
T

CðpÞqðpÞ � fðpÞc

� �
¼ 0 ð56Þ
3.5. Governing equations

The governing equations are derived based on the principle of virtual work
dW int ¼ dW ext ð57Þ

where dWint and dWext represent the virtual work due to internal and external forces, respectively, of the
bonded lap joint. The internal virtual work, dWint, is the sum of the internal virtual work of the adherends
and the adhesives, i.e.,
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dW int ¼
XP
p¼1

dW ðpÞ
int þ

XP
i¼1

XP
j¼iþ1

aði;jÞdW ði;jÞ
int ð58Þ
where the internal virtual work in the adherends and adhesives are expressed as
dW ðpÞ
int ¼

Z
AðpÞ

deðpÞ
T

sðpÞdA ¼
Z
AðpÞ

deðpÞ
T

EðpÞeðpÞdA ð59Þ

dW ði;jÞ
int ¼

Z
Aði;jÞ

deði;jÞ
T

sði;jÞdA ¼
Z
Aði;jÞ

deði;jÞ
T

Eði;jÞeði;jÞdA ð60Þ
The term a(i,j) is used to designate the presence of adhesive bonding and the consistency of stacking order
between adherends i and j, i.e., the elevation of adherend i is always higher that of adherend j. Hence, the
term a(i,j) is defined as
aði;jÞ ¼ 1 adhesive between adherends i and j; and zðiÞ > zðjÞ

0 no adhesive between adherends i and j; or zðiÞ < zðjÞ

(

Substituting from Eqs. (24) and (27) and with the special property of d½LðpÞ
N ðqðpÞÞ�qðpÞ ¼ 2LðpÞ

N ðqðpÞÞdqðpÞ,
the total virtual strain vectors, de(i,j) and de(p), are obtained as
deði;jÞ ¼ LðiÞ
a dqðiÞ � LðjÞ

a dqðjÞ ð61Þ

and
deðpÞ ¼ L
ðpÞ
L þ 2LðpÞ

N ðqðpÞÞ
h i

dqðpÞ ¼ �HðpÞðqðpÞÞdqðpÞ ð62aÞ
where
�HðpÞðqðpÞÞ ¼ L
ðpÞ
L þ 2LðpÞ

N ðqðpÞÞ ð62bÞ

with (p = 1, . . . ,P). The external virtual work is expressed as the sum of the virtual work due to externally
applied forces, dW ðpÞ

ext, and that arising from the boundary reaction forces, dW ðpÞ
c , i.e.,
dW ext ¼
XP
p¼1

dW ðpÞ
ext þ dW ðpÞ

c ð63Þ
The virtual work due to externally applied forces, dW ðpÞ
ext, can be expressed in matrix notation as
dW ðpÞ
ext ¼ dqðpÞTpðpÞ ð64Þ
in which
pðpÞT ¼ pðpÞTe ; pðpÞTj

� �
ð65Þ
with
pðpÞe ¼
Z
CðpÞ

VðpÞ
x tx þ VðpÞ

y ty
n o

dC ð66aÞ

pðpÞj ¼
Z
CðpÞ

VðpÞ
z pz þ VðpÞ

z;x mx þ VðpÞ
z;y my

n o
dC ð66bÞ
The virtual work due to the boundary reaction forces, dW ðpÞ
c , is identical to the first variation of the poten-

tial energy expression in Eq. (56) as
dW ðpÞ
c ¼ �dV ðpÞ

c

¼ �dkðpÞ
T

ðCðpÞqðpÞ � fðpÞc Þ � dqðpÞ
T

CðpÞTkðpÞ
ð67Þ
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The virtual work due to the boundary reactions (constraint conditions) can be interpreted as the virtual
work of the constraint forces, k(p), over the virtual displacements, d(C(p)q(p)), of the adherends and the vir-
tual work of the constrained displacements (boundary conditions), CðpÞqðpÞ � fðpÞc , over the virtual constraint
forces, dk(p). Although the term inside the parentheses in Eq. (67) is identical to zero, it is included in the
virtual work expression in order to obtain a complete set of equations that contains both equilibrium equa-
tions and constraint conditions (kinematic boundary conditions) along the boundary of the adherends.

Substituting from Eqs. (59), (60), (64) and (67) while invoking the strain vectors, e(p)(p = 1, . . . ,P) and
e(i,j), from Eqs. (24) and (27), and their virtual forms, de(p)(p = 1, . . . , r) and de(i,j), from Eqs. (61) and
(62), and rearranging the terms, the virtual work expression of Eq. (57) can be rewritten as
XP
p¼1

dqðpÞ
TðKðpÞðqðpÞÞÞqðpÞ þ

XP
i¼1

XP
j¼1
j 6¼i

dqðiÞ
TðKði;jÞ

ii ðqðiÞ; qðjÞÞÞqðiÞ
n

�dqðiÞ
T

K
ði;jÞ
ij ðqðiÞ; qðjÞÞqðjÞ � dqðjÞ

T

K
ði;jÞ
ji ðqðiÞ; qðjÞÞqðiÞ þ dqðjÞ

T

K
ði;jÞ
jj ðqðiÞ; qðjÞÞ

� 	
qðjÞ

o

¼
XP
p¼1

dqðpÞ
T

pðpÞ � dkðpÞ
T

CðpÞqðpÞ � dqðpÞ
T

CðpÞTkðpÞ þ dkðpÞ
T

fðpÞc ð68Þ
where
KðpÞðqðpÞÞ ¼
Z
Ap

�HðpÞTðqðpÞÞEðpÞHðpÞðqðpÞÞdA ðp ¼ 1; . . . ; PÞ ð69aÞ

K
ði;jÞ
ab ðqðiÞ; qðjÞÞ ¼ aði;jÞ

Z
Aði;jÞ

LðaÞT
a Eði;jÞðqðiÞ; qðjÞÞLðbÞdA ða; b ¼ i; jÞ ð69bÞ
For arbitrary variations of the virtual solution vectors dq(p) and dk(p) (p = 1, . . . ,P), Eq. (68) can further be
rearranged and put into a more compact form
K11 K12 . . . K1P Cð1ÞT 0 � � � 0

KT
12 K22 . . . K2P 0 Cð2ÞT � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

KT
1P KT

2P � � � KPP 0 0 0 CðPÞT

Cð1Þ 0 � � � 0 0 0 � � � 0

0 Cð2Þ � � � 0 0 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 CðPÞ 0 0 0 0

2
6666666666666666664

3
7777777777777777775

�

qð1Þ

qð2Þ

..

.

qðPÞ

kð1Þ

kð2Þ

..

.

kðPÞ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

¼

pð1Þ

pð2Þ

..

.

pðPÞ

fð1Þc

fð2Þc

..

.

fðP Þc

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð70Þ
where
Kmn ¼
KðmÞðqðmÞÞ þ

PP
i¼1
i6¼m

Kðm;iÞ
mm ðqðmÞ; qðiÞÞ þ Kði;mÞ

mm ðqðiÞ; qðmÞÞ
� �

ifðm ¼ nÞ

� Kðm;nÞ
mn qðmÞ; qðnÞ

� �
þ Kðn;mÞ

mn ðqðnÞ; qðmÞÞ
� �

ifðm 6¼ nÞ

8>><
>>:
and
Kmn ¼ KT
nm ifðm 6¼ nÞ ð71Þ
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Note that the submatrices of the stiffness matrix are dependent on the unknown variables, rendering the
governing equations nonlinear, and that these submatrices are non-symmetric. The solution to this equa-
tion requires a nonlinear iterative solution technique that utilizes LU decomposition because sub-matrices
Kii on the diagonal are nonsymmetric. Therefore, the Newton–Raphson iteration method in conjunction
Fig. 6. Variation of the stress components in the adhesive: (a) peeling stress, rzz; (b) shearing stress, rxz; and (c) shearing stress, ryz
with linear adhesive behavior.

Fig. 5. The scaled deformation of the bonded lap joint made of isotropic adherends with linear adhesive behavior at the last load step
(N/N0 = 1).
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with Broyden�s automatic Jacobian matrix update procedure is employed. The iterative solution procedure
described in detail in Appendix B begins with the initial guess of the incremental unknown variables. The
initial guess is obtained from the linearized equilibrium equations, and the converged solution is achieved
through incremental corrections to the initial guess.
4. Numerical results

The present approach is first validated against the nonlinear finite element solution of isotropic single-lap
joint with linear and bilinear adhesive behaviors. As described in Fig. 4a, the adherends have identical pla-
nar geometries, with the width and length dimensions specified as W(p) = 20 mm, L(p) = 60 mm, and
D(p) = 0 with p = 1,2. The overlap (adhesive) length of the joint is given as L(1,2) = 20 mm. The thicknesses
of the adherends and the adhesive are specified as 2h(p) = 1.5 mm and 2h(1,2) = 0.2 mm, respectively. These
dimensions are the same as those considered previously by Edlund and Klarbring (1992).
Fig. 7. Comparison of the peeling stress, rzz, and shearing stress, rxz, along the horizontal centerline, between the present approach
and the finite element analysis: linearly adhesive and bilinear adhesive behavior.
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The adherends are made of aluminum with Young�s modulus and Poisson�s ratio specified as
E(p) = 70 GPa and m(p) = 0.3, respectively. Also, the adhesive exhibits either a linear or a bilinear elastic
material behavior. In the case of linearly elastic material behavior, the shear modulus and Poisson�s ratio
of the adhesive are specified as G(1,2) = 3 GPa and m(1,2) = 0.3, respectively. In the case of bilinear material
behavior, the material parameters of the adhesive are defined as Gð1;2Þ

1 ¼ 3 GPa, Gð1;2Þ
2 ¼ 1:5 GPa, and

m(1,2) = 0.3. The single-lap joint simply supported along the loaded ends is subjected to uniform tension
of N0 = 150 N/mm in 10 equal load increments.

Prior to establishing the validity of present approach, a convergence study was performed to establish
the optimum number of knot points. Starting with the initial knot point numbers of N ðpÞ

x ¼ 11 and
N ðpÞ

y ¼ 7, which respectively correspond to the number of terms of M ðpÞ
x ¼ 9 and M ðpÞ

y ¼ 5, they were grad-
ually incremented in the longitudinal direction. The final values of N ðpÞ

x ¼ 21 and N ðpÞ
y ¼ 7, which produce

M ðpÞ
x ¼ 19 and M ðpÞ

y ¼ 5 terms in the series representation in the x- and y-directions, respectively ensure con-
vergence within 1% difference between two consecutive analyses. These values result in a total of 798 un-
known generalized coordinates in this analysis. The coordinates of the knot vectors employed for each
adherend are given as
Fig. 8.
finite e
tð1Þ
T

x ¼ 45; 46; 47; 49; 52; 55; 58; 61; 63; 64; 64:5; 65; 66; 69; 74; 80; 87:5; 95; 101; 106; 110f g

tð2Þ
T

x ¼ 0; 4; 9; 15; 22:5; 30; 36; 41; 44; 45; 46; 47; 49; 52; 55; 58; 61; 63; 64; 64:5; 65f g
tð1Þy ¼ tð2Þy ¼ 0; 3:33; 6:66; 10; 13:33; 16:66; 20f g
Note that the spacing between the knot points is unequal in the longitudinal direction. In order to capture
the edge effects on the stress concentration in the adhesive, the knot points in the longitudinal direction are
closely spaced near the adhesive edges whereas the spacing is larger away from the adhesive edges.

The present analysis results are compared against predictions obtained from a two-dimensional nonlin-
ear finite element analysis (FEA) using ANSYS, a commercially available program. For the FEA under
plane stress assumptions, the adherends and adhesive were discretized, respectively, by 16 and 6 layers
of quadrilateral elements through the thickness leading to a total of 7648 elements and 8011 nodes. The
scaled deformation of the bonded single-lap joint with linearly elastic adhesive behavior at the final load
step is shown in Fig. 5. As observed in this figure, the bonded single-lap joint bends asymmetrically as it
Comparison of the rotation at the center of the overlap as a function of applied load between the present approach and the
lement analysis.
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is stretched from the right edge of the lower adherend. The asymmetric deformation occurs primarily due to
the presence of eccentric loading, boundary conditions, and the geometrical coupling between the
adherends.

For the case of linearly elastic adhesive material behavior, the transverse normal (peeling), rzz, and trans-
verse shear stresses, rxz and ryz, in the adhesive corresponding to the final load step are illustrated in Fig. 6.
The steep variations of the peeling, rzz, and shearing stresses, rxz and ryz, near the edges and corners of the
adhesive are successfully captured by the present approach. Note that both the peeling stress rzz and the
shearing stress rxz are symmetric along the horizontal and vertical centerlines of the adhesive whereas
the shearing stress ryz is asymmetrically distributed.

A comparison of the peeling stress rzz and the shearing stress rxz evaluated along the horizontal center-
line (i.e., along y = 10 mm) from the present analysis with those of the FEA is shown in Fig. 7. The com-
parison indicates close agreement for both the linearly elastic and bilinear adhesive material behaviors.
Although the classical laminate and shear-lag theories adopted for simplifying the modeling of adherends
Fig. 9. Variation of the peeling stress, rzz, along the horizontal centerline for varying adherend taper lengths: linearly elastic and
bilinear adhesive behavior.
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and adhesive automatically limits the accuracy of the results to a degree less than the exact behavior of the
bonded joint, the present solution method successfully captures, at least, the steep variation of the shearing
and peeling stresses along the adhesive edges as shown in Fig. 7.

A comparison of the slope variation at the center of the overlap as the load is increased for the present
solution method with that of the nonlinear FEA with ANSYS indicates close agreement, as shown in Fig. 8.
The small difference can be attributed to the modeling differences and the fact that FEA includes transverse
shearing deformations in the adherends, as well as in the adhesive, whereas the present approach is based
on the Kirchhoff plate theory, which excludes the transverse shear deformations in the adherends.

The capability of the present approach is demonstrated by considering a bonded composite single-lap
joint of angle-ply laminates (adherends) as shown in Fig. 4a. The adherend length and width and the over-
lap length, as well as the loading and boundary conditions, are identical to those of the validation case ex-
cept for the presence of tapered adherend edges. The lower and upper laminate edges are tapered (beveled)
toward the adhesive edges, as shown in Fig. 4a, where D(1) and D(2) indicate the taper lengths of the upper
and lower adherends, respectively.
Fig. 10. Variation of the shearing stress, rxz, along the horizontal centerline for varying adherend taper lengths: linearly elastic and
bilinear adhesive behavior.
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Both adherends are symmetrically laminated and their angle-ply stacking sequence is given by [h/�h]4s,
where h is referred to as the angle-ply laminate parameter. Each ply made of Graphite–Epoxy has proper-

ties of EðpÞ
L ¼ 127:56 GPa, EðpÞ

T ¼ 11:31 GPa, mðpÞLT ¼ 0:3, and GðpÞ
LT ¼ 6:0 GPa with equal nominal ply thick-

nesses of tðpÞk ¼ 0:0762 mm, with p = 1,2. Hence, the total thickness of the untapered laminate becomes
2h(p) = h = 1.2192 mm. The thickness of the adhesive is specified as 2h(1,2) = 0.12 mm. The linearly elastic

behavior of the adhesive is defined by a shear modulus of Gð1;2Þ
1 ¼ Gð1;2Þ

2 ¼ Gð1;2Þ ¼ 0:4147 GPa, and the

bilinear adhesive material behavior is defined by the parameters Gð1;2Þ
1 ¼ 0:4147 GPa and Gð1;2Þ

2 ¼ 300.
MPa with a characteristic shear strain of cð1;2Þc ¼ 0:03.

The effects of the tapered adherend geometry and the angle-ply laminate parameter, h, on the geomet-
rically nonlinear behavior of the bonded lap joint are investigated by (1) varying the taper lengths, D(1)

and D(2), from 0 to 5 mm in five equal increments while specifying the value of h = 45� (i.e, [+45/�45]4s
Fig. 11. Variation of the shearing stress, ryz, along the vertical centerline for varying adherend taper lengths: linearly elastic and
bilinear adhesive behavior.
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laminate), and (2) by varying the angle-ply laminate parameter, h, as 0�, 5�, 10�, 15�, 30�, and 45� while
assuming an untapered adherend edge, i.e., D(1) = D(2) = 0.

The effects of taper lengths on the transverse normal stress, rzz, and the transverse shear stress, rxz, both
evaluated along the horizontal centerline y = 10 mm, are depicted in Figs. 9 and 10, respectively, for both
linearly elastic and bilinear adhesive material behaviors. As shown in these figures, the peeling stress, rzz,
reduces with increasing taper length, and the shearing stress, rxz, reduces slightly along the horizontal cen-
terline of the adhesive. The transverse shear stress, ryz, evaluated along the vertical centerline (x = 45 mm
line) is depicted in Fig. 11, also for both linearly elastic and bilinear adhesive material behaviors. The shear
stress component near the corners of the adhesive edges decreases significantly with increasing taper length.
Although not shown here, the transverse shearing stress, rxz, also reduces significantly at the corners of the
adhesive edges as a result of increasing taper length. As observed in Figs. 9–11, the bilinear adhesive mate-
rial behavior yields stress variations identical to those of the linear adhesive behavior, but with relatively
lower transverse normal and shear stress variations than those of the linearly elastic adhesive material.

Variations of the peeling stress, rzz, and transverse shear stresses, rxz and ryz, at the final load step,
N 0=Nmax

0 ¼ 1:0, in the adhesive with linearly elastic adhesive material in the absence of tapered adherend
Fig. 12. Variation of the stress components in the adhesive: (a) peeling stress, rzz, (b) shearing stress, rxz along the horizontal vertical
centerline, and (c) shearing stress, ryz for untapered adherends of [±45]4s angle-ply laminates with linear adhesive behavior.
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edges are illustrated in Fig. 12. As expected, both the transverse shear and peeling stresses increase rapidly
near the edges of the adhesive. As observed in Fig. 12, all of the adhesive stress variations are asymmetric
with respect to the horizontal and vertical centerlines. Although the adherents are symmetric angle-ply lam-
inates with no material coupling between stretching and bending that may cause twisting in the adherends
and result in asymmetric stress distribution in the adhesive, the coupling between the bending and twisting
deformations disturbs the symmetry in the adhesive stresses.

In order to understand this behavior, the adhesive stresses are evaluated along the left edge of the adhe-
sive (i.e., x = 45) for varying angle-ply laminate parameter, h, as shown in Fig. 13. These results are ob-
tained for untapered adherends and linearly elastic adhesive behavior. As shown in Fig. 13a, the peeling
stress, rzz, is symmetric along the adhesive edge for h = 0. As h is gradually increased from 0� to 15�,
the peeling stress near the upper corner of the left adhesive edge (i.e., x = 45 and y = 20) becomes higher
than that near the lower corner (i.e., x = 45 and y = 0). As h is further increased, the difference in the peel-
ing stress near the corners of the adhesive edge becomes more pronounced, as shown in Fig. 13a. A similar
behavior is also observed in the transverse shearing stress, rxz, where the magnitude of stress at one corner
Fig. 13. Variation of stress components in the adhesive with bi-linear material behavior: (a) peeling stress, rzz, and (b) shearing stress,
rxz, along the left edge of the adhesive for varying values of angle-ply parameter, h.



Fig. 14. Variation of the stress components in the first adhesive: (a) peeling stress, rzz; (b) shearing stress, rxz; and (c) shearing stress,
ryz with linear adhesive behavior.

Fig. 15. Scaled deformation of the bonded double-lap joint at the last load step.
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is different than that at the other corner, as shown in Fig. 13b. Both the peeling and shearing stresses in-
crease with increasing h. This is primarily due to the reduction of adherend in-plane and bending stiffnesses
in the longitudinal direction. The lower the in-plane and bending stiffnesses of the adherends the higher the
edge effects.
Fig. 16. Out-of-plane displacement of the lower adherend as a function of gap length.

Fig. 17. Variation of the peeling, rzz, and shearing, rxz, stress components at the mid-point of the inner adhesive edge as a function of
gap length with linear adhesive behavior.
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The capability of the present approach is further demonstrated by considering a bonded composite dou-
ble-lap joint of angle-ply laminates (adherends) without tapered edges. As shown in Fig. 4b, the width and
length of the adherends are specified asW(p) =W = 20 mm, with p = 1, 2, 3, 4 and L(1) = L(2) = 65 mm and
L(3) = L(4) = 50 mm, respectively. The overlap (adhesive) length between the adherends is specified as
L(1,3) = L(1,4) = L(2,3) = L(2,4) = 20 mm. The thicknesses of the adherends and the adhesives are specified
as 2h(p) = h = 1.2192 mm and 2h(1,3) = 2h(1,4) = 2h(2,3) = 2h(2,4) = 0.12 mm, respectively.

Adherends are symmetrically laminated and their angle-ply stacking sequence is given by [30/�30]4s. Ply
and adhesive properties as well as their thicknesses are same as those defined for the single-lap joint. The
double-lap joint is simply supported along the loaded ends and subjected to uniform tension of
N0 = 100 N/mm in 10 equal load increments.

The variations of the peeling stress, rzz, and transverse shear stresses, rxz and ryz, in the adhesive with
linearly elastic adhesive material behavior obtained at the final load step of N 0=Nmax

0 ¼ 1:0 are illustrated in
Fig. 18. Variation of the stress components in the first adhesive: (a) peeling stress rzz; (b) shearing stress rxz; and (c) shearing stress ryz
with bilinear adhesive behavior.
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Fig. 14. The peeling (rzz) and shearing (rxz) stress distributions depicted in Fig. 14a and b reveal that bend-
ing deformation occurs in the upper and lower adherends (adherends 3 and 4) even though the adherends
are both symmetrically laminated and placed with respect to each other. This observation is also verified by
the out-of-plane deformed configuration of the adherends in Fig. 15, in which the upper and lower adher-
ends (adherends 3 and 4) have curvatures while the centerline adherends (adherends 1 and 2) remain
straight after deformation.

The bending deformations in the upper and lower adherends cause tensile and compressive peeling stress
distributions along the outer and inner adhesive edges, respectively as captured in Fig. 14a. Furthermore,
the tensile peeling stress distributions along the outer edges of the adhesive regions are relatively higher in
magnitude than the compressive peeling stresses along the inner edges. This expected behavior is mainly due
to the presence of the gap between the center adherends that result in stress concentrations along the inner
adhesive edges. As shown in Fig. 16, the out-of-plane displacement variation at the center of lower and
upper adherents considerably increase with increasing gap length as a result of the bending action taking
place when the tensile in-plane loads are eccentrically transferred to these upper and lower adherends from
the center adherends. Also, Fig. 17 demonstrates the effect of the gap length on the peeling (rzz) and
shearing (rxz) stresses evaluated at the mid point on the inner edges. While the peeling stresses increase
considerably with increasing gap length, the shearing stress evaluated at these points slightly decrease as
the gap length increases. The nearly steady variation of the shearing stress is expected because the in-plane
load transfer between the center adherends and the lower and upper adherends always causes shear stress
concentrations to develop along the vertical edges of the adhesive layers regardless of the presence of the
gap.

In the case of bilinear adhesive behavior, the variations of the peeling stress, rzz, and transverse shear
stresses, rxz and ryz, at the final load step are illustrated in Fig. 18. The peeling and shearing stress distri-
butions given in these figures exhibit behavior similar to those linearly elastic adhesive material behavior,
except for the magnitudes of the peeling and shearing stresses being slightly lower in the regions where the
adhesive stresses exceed their corresponding critical strains.
5. Conclusions

A semi-analytical solution procedure was presented for the geometrically nonlinear three-dimensional
analysis of a single- and double-lap joints made of composite tapered adherends bonded by a linearly elastic
or bilinear adhesive. The nonlinear equations of equilibrium were derived based on the principle of virtual
displacements in conjunction with the von Karman nonlinear plate theory for the adherends and the shear-
lag theory for the adhesive. The bilinear adhesive material behavior was incorporated by computing the
material parameters from an effective shear stress-shear strain relationship. The displacement fields were
assumed in the form of a double series containing fifth-order B-spline functions (displacement modes) in
each direction. The resulting nonlinear equations of equilibrium were then solved numerically by employing
the Newton–Raphson incremental iterative procedure along with Broyden�s automatic Jacobian matrix
update.

A comparison against a two-dimensional nonlinear FEA solution established the capability of the pres-
ent approach to accurately capture the steep variations of both peeling and shearing stresses in the vicinity
of the adhesive edges, as well as at the corners. Furthermore, the variation of overlap rotations indicates
that the stress-induced effects due to geometric nonlinearity were captured by preserving the nonlinear
terms in the strain displacement relations.

In the case of a bonded single-lap joint of angle-ply laminates, the tapered edges led to a considerable
reduction of the peeling stresses and a slight reduction of the shearing stress component in the longitudinal
direction (rxz). However, the increase in taper length reduced all the adhesive stress components at the
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corners of the adhesive region. Furthermore, the increase in the angle-ply laminate parameter not only in-
creased the stress concentration near the adhesive edges but also changed the symmetric distribution of
peeling and longitudinal (transverse) shearing stresses to asymmetric due to the presence of material cou-
pling between bending and twisting deformations of the angle-ply laminates.

In the case of a bonded double-lap joint, the present analysis also captures the influence of the gap be-
tween the center adherends on the bending behavior of the patches (lower and upper adherends) and espe-
cially the stress distribution in the adhesive layers between these adherends. As the upper and lower
adherends bend due to the presence of the gap, they tend to pull the center adherends near the outer overlap
edges and push along the inner edges, thus creating tensile and compressive peeling stresses along these
edges, respectively. Also, stress concentrations of both peeling and shearing stresses appear along the inner
adhesive edges. The peeling stresses along the inner edges increase with increasing gap size. However, no
noticeable difference is obtained in the shearing stress calculations along the inner edges as a result of
increasing gap length.
Appendix A

The B-spline functions, Tmða; tðpÞa ;KÞ, with a = x, y and (p = 1, . . . ,P), employed in Eq. (8) are defined
recursively in the form (Hoschek and Lasser, 1993)
T mða; tðpÞa ;KÞ ¼
ða� tðpÞaðmÞÞ

tðpÞaðmþK�1Þ � tðpÞaðmÞ

� 	 Tmða; tðpÞa ;K � 1Þ þ
tðpÞaðmþKÞ � a

� 	
tðpÞaðmþKÞ � tðpÞaðmþ1Þ

� 	 Tmþ1ða; tðpÞa ;K � 1Þ ð72Þ
with m ¼ 1; 2; . . . ;M ðpÞ
a and k > 1. The variable tðpÞaðmÞ represents the components of the knot vector, tðpÞa , for

the (K � 1)th-degree B-spline functions. The knot vector, tðpÞa , is defined in terms of the Cartesian coordinate
(a = x, y) of the selected points as
tðpÞa ¼ tðpÞað0Þ; t
ðpÞ
að1Þ; . . . ; t

ðpÞ
aðN ðpÞ

a Þ
; tðpÞ

aðN ðpÞ
a þ1Þ

; tðpÞ
aðN ðpÞ

a þ2Þ
; . . . ; tðpÞ

aðN ðpÞ
a þ2KÞ

n o
¼ aðpÞ0 ; aðpÞ0 ; . . . ; aðpÞ0 ; aðpÞ1 ; aðpÞ2 ; . . . ; aðpÞ

N ðpÞ
a

; aðpÞ
N ðpÞ

a þ1
; aðpÞ

N ðpÞ
a þ1

; . . . ; aðpÞ
N ðpÞ

a þ1

n o
ð73Þ
where N ðpÞ
a þ 1ða ¼ x; y; p ¼ 1; . . . ; P Þ denotes the number of distinct knot points selected along the a direc-

tion in the lower and upper adherends. Based on the definition of the knot vector, tðpÞa , the end points (i.e.,
aðpÞ0 and aðpÞ

N ðpÞ
a þ1

) are repeated K times. In Eqs. (72) and (73), the relationship between the number of knot
points and the extent of the B-spline functions, M ðpÞ

a , is given as
M ðpÞ
a ¼ N ðpÞ

a � K þ 3 ð74Þ
In this study, the knot point numbers, N ðpÞ
a and M ðpÞ

a in the x- and y-directions, respectively are varied in the
B-spline functions with K = 5.
Appendix B

The nonlinear equilibrium equation, Eq. (70), can be rearranged in the form
wðqÞ ¼ KðqÞq� f ¼ 0 ð75Þ
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where the vectors q and f and the matrix K(q) are defined as
qT ¼ qð1Þ
T

; qð2Þ
T

; . . . ; qðrÞ
T

; kð1Þ
T

; . . . ; kð2Þ
T

; kðrÞ
T

n o
ð76aÞ

fT ¼ pð1Þ
T

; pð2Þ
T

; . . . ; pðrÞ
T

; fð1Þ
T

c ; fð2Þ
T

c ; . . . ; fðrÞ
T

c

n o
ð76bÞ

KðqÞ ¼

K11 K12 . . . K1P Cð1ÞT 0 � � � 0

KT
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..
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. ..
.
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2P � � � KPP 0 0 0 CðP ÞT
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..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.
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2
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3
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ð76cÞ
The vector w(q) represents the unbalanced load vector. Under equilibrium conditions, the solution vector q
exactly satisfies Eq. (75) and no unbalanced forces exist. However, it is practically impossible to obtain a
direct solution of the nonlinear equilibrium equations. Instead, the solution is obtained by resorting to an
iterative procedure such as the Newton–Raphson (N–R) method. In order to proceed with the N–R meth-
od, Eq. (75) is rewritten in iterative form as
wðqkþ1
m Þ ¼ Kðqkþ1

m Þqkþ1
m � fm ¼ 0 ð77Þ
where qkþ1
m denotes the trial solution vector at load step m after k number of iterations, and it is expressed as

a correction to the trial solution vector, qkm, at the kth iteration at load step m, i.e.,
qkþ1
m ¼ qkm þ Dq ð78Þ
in which Dq represents the correction term (incremental solution vector). The solution vector qkm is known
from the kth iteration at load step m and the correction term, Dq is to be determined.

The Taylor series expansion of wðqkþ1
m Þ about the known trial solution qkm as
wðqkþ1
m Þ ¼ wðqkmÞ þ

ow

oq
ðqkmÞDqþHOT ¼ 0 ð79Þ
in which the unbalanced load vector wðqkmÞ is non-zero from the kth trial solution vector, qkm. Retaining the
linear terms in the expansion while disregarding the higher order terms (HOT), the Newton–Raphson (N–
R) method yields
JðqkmÞDq ¼ �wðqkmÞ ð80Þ

where the Jacobian matrix, JðqkmÞ, is defined as
JðqkmÞ ¼
ow

oq
ðqkmÞ ¼

oK

oq
ðqkmÞqkm þ KðqkmÞ ð81Þ
and
Dq ¼ qkþ1
m � qkm ð82Þ
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Because of the linearization of Eq. (78), the incremental solution vector (the correction term), Dq ob-
tained from Eq. (79) is not expected to yield the actual solution. However, it provides a good estimate
of qkþ1

m in the form
qkþ1
m ¼ qkm � J�1ðqkmÞwðqkmÞ ð83Þ
As part of the iterative solution procedure, this recursive relationship requires the updated Jacobian matrix,
i.e., Jðqkþ1

m Þ, which is obtained based on Broyden�s algorithm (Geradin et al., 1981)
Jðqkþ1
m Þ ¼ JðqkmÞ þ

Dw� JðqkmÞDq

 �

DqT

DqTDq
ð84Þ
where
Dw ¼ wðqkþ1
m Þ � wðqkmÞ ð85Þ
At the beginning of current (mth) load step, the converged solution vector, qkm�1, and the Jacobian matrix,
Jðqkm�1Þ, computed from the previous load step are employed as the initial estimates for the solution vector
and the Jacobian matrix in the current load step, i.e.,
q0m ¼ qkm�1 ¼ qm�1 and Jðq0mÞ ¼ Jðqkm�1Þ ¼ Jðqm�1Þ ð86a; bÞ

where the superscripts on the right hand sides of Eqs. (86) are removed to represent the converged solutions
from the preceding load step.

Note that for the case of k = m = 0 (i.e., q00 ¼ 0), the Jacobian matrix Jðq00 ¼ 0Þ represents the linear stiff-
ness matrix at the unloaded state of the bonded lap joint, i.e.,
Jðq00 ¼ 0Þ ¼ Kðqð1Þ ¼ 0; . . . ; qðP Þ ¼ 0Þ ¼ KL ð87Þ
Therefore, the initial solution vector and the Jacobian matrix in the first load step are estimated by
q01 ¼ 0 and Jðq01Þ ¼ KL ð88Þ
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